Data cluster analysis-based classification of overlapping nuclei in Pap smear samples
نویسندگان
چکیده
BACKGROUND The extraction of overlapping cell nuclei is a critical issue in automated diagnosis systems. Due to the similarities between overlapping and malignant nuclei, misclassification of the overlapped regions can affect the automated systems' final decision. In this paper, we present a method for detecting overlapping cell nuclei in Pap smear samples. METHOD Judgement about the presence of overlapping nuclei is performed in three steps using an unsupervised clustering approach: candidate nuclei regions are located and refined with morphological operations; key features are extracted; and candidate nuclei regions are clustered into two groups, overlapping or non-overlapping, A new combination of features containing two local minima-based and three shape-dependent features are extracted for determination of the presence or absence of overlapping. F1 score, precision, and recall values are used to evaluate the method's classification performance. RESULTS In order to make evaluation, we compared the segmentation results of the proposed system with empirical contours. Experimental results indicate that applied morphological operations can locate most of the nuclei and produces accurate boundaries. Independent features significance test indicates that our feature combination is significant for overlapping nuclei. Comparisons of the classification results of a fuzzy clustering algorithm and a non-fuzzy clustering algorithm show that the fuzzy approach would be a more convenient mechanism for classification of overlapping. CONCLUSION The main contribution of this study is the development of a decision mechanism for identifying overlapping nuclei to further improve the extraction process with respect to the segmentation of interregional borders, nuclei area, and radius. Experimental results showed that our unsupervised approach with proposed feature combination yields acceptable performance for detection of overlapping nuclei.
منابع مشابه
Evaluating the Pap Smear Reports of Pathology Laboratories in Ahvaz, Iran
Background & aim: Pap smear is a screening procedure for cervical cancer. The incidence and mortality rate of cervical cancer has decreased up to 90% in the regular screening in women aged 20-65 years. This study aimed to investigate the Pap smear reports of pathology laboratories in Ahvaz, Iran. Methods: In this cross-sectional study, 1,006 Pap smear reports were collected from pathology labor...
متن کاملUnsupervised segmentation and classification of cervical cell images
The Pap smear test is a manual screening procedure that is used to detect precancerous changes in cervical cells based on color and shape properties of their nuclei and cytoplasms. Automating this procedure is still an open problem due to the complexities of cell structures. In this paper, we propose an unsupervised approach for the segmentation and classification of cervical cells. The segment...
متن کاملCombining shape, texture and intensity features for cell nuclei extraction in Pap smear images
In this work, we present an automated method for the detection and boundary determination of cells nuclei in conventional Pap stained cervical smear images. The detection of the candidate nuclei areas is based on a morphological image reconstruction process and the segmentation of the nuclei boundaries is accomplished with the application of the watershed transform in the morphological color gr...
متن کاملAutomated segmentation of cell nuclei in PAP smear images
In this paper an automated method for cell nucleus segmentation in PAP smear images is presented. The method combines the global knowledge about the cells and nuclei appearance and the local characteristics of the area of the nuclei, in order to achieve an accurate nucleus boundary. Filters and morphological operators in all three channels of a color image result in the determination of the loc...
متن کاملAccurate Localization of Cell Nuclei in PAP Smear Images using Gradient Vector Flow Deformable Models
In this work, we present an automated method for the detection of cells nuclei boundaries in conventional PAP stained cervical smear images. The proposed method consists of three phases: a) the definition of candidate nuclei centroids set using mathematical morphology, b) the initial approximation of cells nuclei boundaries and c) the application of the Gradient Vector Flow (GVF) snakes for the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2014